
MP2I – Lycée Carnot – 2025/2026 Informatique – DM2 1/2

Devoir maison n°2
Ce devoir maison est à faire sur feuille et à rendre pour le 2 mars (au début de votre TP).

Exercice 1 Tri par sélection
Cet exercice est à faire en C.
Lorsqu’on effectue le tri croissant d’un tableau 𝑡, on peut se rendre compte que la plus petite valeur du tableau doit
aller dans la case 0, la deuxième plus petite valeur dans la case 1, etc... Le principe du tri par sélection est donc de
créer un nouveau tableau et de le remplir en trouvant le 1er minimum de 𝑡, le deuxième minimum de 𝑡, etc...
Pour un tableau d’entiers 𝑡 de taille 𝑛, le pseudo-code est le suivant :

■ Créer un tableau 𝑡′ de taille 𝑛 (de contenu quelconque)
■ Créer une copie 𝑡2 de 𝑡.
■ Calculer le maximum 𝑚𝑎𝑥𝑖 du tableau 𝑡.
■ Pour 𝑖 allant de 0 à 𝑛 − 1 :

■ Trouver le minimum 𝑚𝑖𝑛𝑖 de 𝑡2 et son indice 𝑖𝑚𝑖𝑛.
■ Mettre 𝑚𝑖𝑛𝑖 dans la case 𝑖 de 𝑡′.
■ Mettre 𝑚𝑎𝑥𝑖 dans la case 𝑖𝑚𝑖𝑛 de 𝑡2.

■ Renvoyer 𝑡′.

1. Écrire une fonction int* copie(int* t, int n) qui renvoie une copie du tableau 𝑡. Attention : les deux tableaux
doivent être indépendants

2. Écrire une fonction int indice_min(int* t, int n) qui renvoie l’indice du minimum (et pas sa valeur). Par
exemple pour 𝑡 = [2, 4, 1, 3], le minimum est dans la case 2, donc la fonction renverra 2.

3. En suivant le principe ci-dessus, écrire une fonctions int* tri_selection(int* t, int n) qui renvoie un tableau
trié contenant les mêmes éléments que 𝑡.

4. Quelle est la complexité de cette méthode en temps? En mémoire ?

On va maintenant effectuer le tri par sélection en place, c’est à dire en modifiant le tableau initial et sans créer de
tableau auxiliaire.
Le principe est le suivant :

■ Pour 𝑖 allant de 0 à 𝑛 − 1 :
■ Trouver le plus petit élément de 𝑡 entre les indices 𝑖 et 𝑛 − 1. On note 𝑚𝑖𝑛𝑖 sa valeur et 𝑖𝑚𝑖𝑛 son indice.
■ Échanger le contenu des cases 𝑖 et 𝑖𝑚𝑖𝑛 : 𝑚𝑖𝑛𝑖 va dans la case 𝑖 et la valeur qui était dans la case 𝑖 va dans

la case 𝑖𝑚𝑖𝑛.

5. Écrire une fonction int indice_min_partiel(int* t, int n, int i) qui renvoie l’indice du minimum (et pas sa
valeur) en ne considèrant que les éléments après l’indice 𝑖 (inclus).
Par exemple pour 𝑡 = [5, 0, 4, 1, 10] et 𝑖 = 2, la fonction renvoie 3 car le plus petit élément en ignorant les indices
0 et 1 est le 1, en position 3.

6. En suivant le principe ci-dessus, écrire une fonctions void tri_selection_en_place(int* t, int n) qui trie 𝑡 par
effet de bord (en retournant void).

Exercice 2 Reconstruction d’arbres
Cet exercice est à faire en Ocaml.
Un arbre binaire strict est un arbre binaire dans lequel les noeuds ont soit 0, soit 2 fils (et jamais un seul). L’arbre vide
n’est pas considéré comme étant un arbre binaire strict.
Lors du parcours d’un arbre binaire strict, on construira une liste contenant le type suivant (F pour une feuille, NI
pour un noeud interne)
type 'a noeud = F of 'a | NI of 'a;;

Par exemple le parcours préfixe de l’arbre suivant donne la liste [NI 7 ; NI 5 ; F 3 ; F 2 ; F 6] :

MP2I – Lycée Carnot – 2025/2026 Informatique – DM2 2/2

Le but de cet exercice est de reconstruire l’arbre à partir de la liste de ses noeuds, trouvée par un des parcours d’arbres.

1. Donner deux arbres distincts dont le parcours infixe produit la liste [F 0 ; NI 1 ; F 2 ; NI 3 ; F 4]. Que peut-on en
conclure?

2. Retrouver un arbre dont le parcours préfixe donne [NI 1 ; NI 2 ; F 4 ; F 5 ; F 4]. En existe-t-il un autre (aucune
justification attendue) ?

3. Expliquer sur des exemples comment reconstruire un arbre à partir de sa liste de noeuds/feuilles pour un parcours
préfixe. On pourra utiliser une pile.

4. Programmer l’idée précédente en Ocaml. La signature sera : reconstruit : 'a noeud list -> 'a arbrebin. Si vous
avez besoin d’une pile, vous pouvez utiliser le module Stack.

5. Qu’est-ce qui changerait pour notre algorithme si on considère plutôt un parcours suffixe ?
6. Programmer en Ocaml un algorithme qui fait la même chose mais pour les listes données par le parcours en

largeur. Si vous avez besoin d’une file, vous pouvez utiliser le module Queue.

Exercice 3 Entiers de Péano
Cet exercice est à faire en OCaml
On considère le type entier suivant qui représente les éléments de ℕ.

type entier =
| Zero
| Successeur of entier;;

Par exemple, l’entier 2 sera représenté par let deux = Successeur (Successeur Zero).

1. Écrire une fonction int_vers_entier : int -> entier qui transforme un entier donné par sa représentation
OCaml en un entier avec notre représentation comme successeur de successeurs de 0. Par exemple, deux doit
être égal à int_vers_entier 2

2. Écrire une fonction entier_vers_int : entier -> int qui réalise la transformation inverse. Par exemple, on pourra
vérifier que entier_vers_int deux = 2

3. Écrire une fonction add : entier -> entier -> entier réalisant l’addition de deux entiers. On pourra remarquer
que si 𝑛 ⩾ 1 et 𝑚 ⩾ 0, 𝑛 +𝑚 = 1 + ((𝑛 − 1) +𝑚). Il s’agit bien d’implémenter directement l’addition sur ce type
et pas d’utiliser la fonction précédent pour repasser par les entiers de OCaml.

4. Écrire de même une fonction mult réalisant la mulitiplication de deux entiers, de type entier -> entier -> entier.
Comme pour la question précédente, on n’utilisera pas la fonction entier_vers_int.

